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Abstract. Nitrate plays a crucial role in marine ecosystems, as it influences primary productivity. Despite its ecological signifi-
cance, accurately mapping its three-dimensional (3D) concentration on a large scale remains a considerable challenge due to the
inherent limitations of existing methodologies. To address this issue, this study proposes a continual learning-based multilayer
perceptron (MLP) model to reconstruct the 3D ocean nitrate concentrations above 2000 m depth over the pan-European coast.
The continual learning strategy enhances the model generalization by integrating knowledge from CMEMS nitrate data, effec-
tively overcoming the spatial limitations of BGC-Argo observations in comprehensive nitrate characterization. The proposed
approach integrates the advantages of extensive spatial remote sensing observations, the precision of Biogeochemical Argo
(BGC-Argo) measurements, and the broad knowledge from simulated nitrate datasets, exploiting the capacity of neural net-
works to model their nonlinear relationships between multi-source sea surface environmental variables and subsurface nitrates.
The model achieves excellent performance in profile cross-validation (R? = 0.98, RMSE=0.592 pmol - kg~'), and maintains
robustness across diverse 3D validation scenarios, suggesting its effectiveness in filling observational gaps and reconstructing
the 3D nitrate field. Then, the spatiotemporal distribution of the reconstructed 3D nitrate field from 2010 to 2023 reveals a spa-
tial distribution pattern, an interannual upward trend, and the degree of consistency in vertical variation. The contributions of
all 22 input features to the model’s estimation were respectively quantified by using Shapley additive explanations values. This
study reveals the potential of the proposed approach to overcoming observational limitations and enrich further insights into
the 3D ocean condition. The reconstructed 3D nitrate dataset is freely available at https://doi.org/10.5281/zenodo.14010813
(Yu et al., 2024).

1 Introduction

In the last decade, the global oceans have absorbed approximately 25% of anthropogenic carbon dioxide (CO,) from the at-
mosphere, playing a crucial role in mitigating climate change impacts (Friedlingstein et al., 2020). However, oceanic changes,

such as warming and eutrophication may alter this role, leading to complex effects on marine ecosystems and climate. As the
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primary limiting nutrient in the upper ocean, nitrate is pivotal in regulating primary productivity, especially new productivity
(Bristow et al., 2017; Chen et al., 2023). This could constitute a long-term absorption of CO2 from the surface to the ocean
interior (Eppley and Peterson, 1979; Gregg et al., 2003; Joo et al., 2016; Rafter et al., 2017). Thus, a comprehensive compre-
hension of the temporal and spatial distribution of ocean nitrate is indispensable for conducting research on marine ecology
and environment.

Most biogeochemical data are collected in situ via coastal surveillance, oceanographic cruises, offshore platforms or au-
tonomous instruments, such as the Global Ocean Data Analysis Project version 2 database (GLODAPv2) and Biogeochemical
Argo (BGC-Argo) (Claustre et al., 2020; Lavigne et al., 2015; Nittis et al., 2007). However, traditional in situ measurements
alone cannot provide large-scale and continuous nitrate data. In contrast, remote sensing offers a promising alternative for
estimating nitrate due to its broad spatial coverage, temporal consistency, and cost-effectiveness (Chang et al., 2013; Pan et al.,
2018). Previous research has successfully utilized it to retrieve water nutrients (Ansper and Alikas, 2019; Du et al., 2020;
Mortula et al., 2020; Yu et al., 2016). Machine learning (ML) technologies have also been employed for nutrient concentration
retrieval (Huang et al., 2021; Lv et al., 2020; Qun’ou et al., 2021).

Optical satellites face challenges in nitrate retrieval due to the lack of distinctive nitrate signals(Chen et al., 2023; Sathyen-
dranath et al., 1991). Previous studies have demonstrated a strong empirical correlation between SSN and certain measurable
seawater parameters (Goes et al., 2000; Joo et al., 2018; Kamykowski et al., 2002; Sili6-Calzada et al., 2008; Switzer et al.,
2003). Physical processes, biological activity, and chemical reactions like nitrification are commonly recognized as the three
principal processes in regulating ocean nitrate (Goes et al., 2000, 1999; Kudela and Dugdale, 2000; Pan et al., 2018). Cold
and nitrate-rich water is transported to the euphotic layer through physical processes, including upwelling and convective mix-
ing in winter, enriching SSN while decreasing sea surface temperature (SST) (Kudela and Dugdale, 2000; Pan et al., 2018).
Phytoplankton growth consumes nitrate and converts it into organic matter, reducing SSN while increasing Chlorophyll con-
centration (Chl) (Goes et al., 2000, 1999). Therefore, various physical and biogeochemical characteristics were frequently
utilized as features to establish empirical connections with SSN. The conventional method for nitrate retrieval typically relies
solely on SST for linear regression, given its negative relationship with SSN (Sarangi and Devi, 2017; Switzer et al., 2003).
Nevertheless, the correlation between SST and SSN is subject to significant geographical and temporal variation, influenced
by differing environmental conditions across regions (Goes et al., 1999; Silié-Calzada et al., 2008). Goes et al. (1999) found
that incorporating Chl-a alongside SST notably improves the accuracy of SSN retrieval compared to using SST in isolation.
Additionally, Colored dissolved organic matter (CDOM) is also a feasible candidate for oceans with considerable river inflow
(Pan et al., 2018).

One primary limitation of remote sensing retrieval is the challenge of accurately monitoring subsurface environmental pa-
rameters (Akbari et al., 2017; Ali et al., 2004). While in situ data provide precise measurements of local vertical conditions,
they are inadequate in characterizing ecosystem processes occurring at the extensive temporal and spatial scales involved
(Von Schuckmann et al., 2019). Accurate 3D data acquisition for key variables over extensive scales is necessary for a deeper
understanding of marine ecosystems (Rossi et al., 2021). To address this issue, various methods including modeling ecosys-

tems and ocean dynamics have been explored to estimate biogeochemical variables, with some being widely applied (Baretta
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et al., 1995; Bruggeman and Bolding, 2014; Holt et al., 2012; Kay and Butenschon, 2018). However, these methods require
a thorough representation of physical and biological processes with highly nonlinear dynamics. While they can simulate en-
vironmental parameters and their distribution mechanisms, they may not always achieve the accuracy needed for specific
applications (Storto et al., 2019; Tian et al., 2022).

In contrast, synergizing the extensive coverage of satellite data with the high precision of in situ data represents an effective
approach, enabling the frequent characterization of the ocean’s vertical structure across an expanded spatial scope (Buon-
giorno Nardelli, 2020; Tian et al., 2022; Gao et al., 2024; Zhou and Zhang, 2023). Empirical models were widely used to
extrapolate important ocean variables from the surface to deeper layers (Morel and Berthon, 1989; Uitz et al., 2006), but they
were vulnerable to inaccurate estimates due to the intricacy and non-linearity, particularly in locations with irregular vertical
stratification and small-scale phenomena (Sammartino et al., 2020). Recent advancements in neural network (NN) technology
have yielded promising results in addressing this issue (Asdar et al., 2024). For instance, Richardson et al. (2002) pioneered
the use of an unsupervised NN for vertical chlorophyll reconstruction. Supervised NNs are capable of fitting nonlinear re-
lationships between sea surface environmental variables and deep-sea conditions and have been successfully applied to the
estimation or prediction of various subsurface ocean parameters such as temperature and salinity (Buongiorno Nardelli, 2020;
Qi et al., 2022; Smith et al., 2023; Su et al., 2021), and density (Su et al., 2024). Additional studies have supplemented sea
surface parameters with reanalysis or profile data to reconstruct more subsurface parameters (Hu et al., 2023; Tian et al., 2022;
Zhou and Zhang, 2023). However, due to the complex mechanisms and heterogeneous distribution of nitrate (Webb, 2021),
its 3D reconstruction was not developed as effectively as parameters like temperature, particularly as the need for concurrent
vertical observations of additional variables persists. Wang et al. (2023) employed a regionalized deep neural network (DNN)
to estimate nitrate concentration in the northwestern Pacific Ocean. Similar supervised techniques based on the Multilayer
Perceptron (MLP) have been utilized to rebuild water-column bio-optical and biogeochemical variables using remote sensing
and BCG-Argo data (Fourrier et al., 2020; Sauzede et al., 2017). A Bayesian strategy was proposed to supplement in situ data
by inferring vertical profiles of unmeasured variables (Bittig et al., 2018). Yang et al. (2024) successfully reconstructed the 3D
nitrate structure of the Indian Ocean from surface data using two advanced artificial intelligence networks. However, this study
relied on simulated data for supervised training instead of actual observational data, which may limit the model’s applicability
in real ocean environments.

In this study, we develop an MLP to accurately reconstruct the 3D nitrate concentration upper 2000 m ocean, addressing the
aforementioned challenges. Including vertical profile variables among the features might introduce potential uncertainty and
limit the expansion of the estimation range, so input features are exclusively based on sea surface environmental variables. The
model employs a continual learning strategy (Kirkpatrick et al., 2017), initially pre-training on simulated-nitrate data to boost
its generalization capabilities. The 3D nitrate field of the pan-European ocean from 2010 to 2023 is reconstructed based on this
model and reveals the spatiotemporal distribution and interannual variations. Additionally, the contribution of each feature to
the model estimates is calculated using Shapley values (Lundberg and Lee, 2017; Shapley, 1988), quantifying the effectiveness

of features.
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Figure 1. The pan-European domain, including the MED and the NEA. The study area is highlighted in blue, with shades of color indicating
ocean depth. The warm-colored grid indicates the count of BGC-Argo observations. Two rectangular boxes are selected as typical data

regions for pattern comparison.

2 Material and methods
2.1 Study area

The study area extends from 30° W to 37° E latitude and 30° N to 65° N longitude, covering the Mediterranean Sea (MED)
and a portion of the Northeast Atlantic (NEA). This area is considered to be coastal of the Pan-European domain, as shown
in Figure 1. The study area focuses on the shelf seas around Europe, which play a disproportionately large role in the marine
environment. Shelf seas contribute to 30% of marine primary productivity (Longhurst et al., 1995; Smith and Hollibaugh,
1993) despite covering less than 10% of the global seas (Holt et al., 2009). It is thus essential to accurately estimate important

parameters of marine biogeochemical processes in these areas for understanding marine systems.
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Nutrients from the open ocean and river runoff create a general and rapid biogeochemical cycle in the NEA (Gattuso et al.,
1998), which contrasts with the MED. The study aims to validate its effectiveness in different marine regions by exploring the

relationships among multiple variables.
2.2 Data
2.2.1 Insitu nitrate data

The in situ data of nitrate concentration used in this study were obtained through BGC-Argo (https://argo.ucsd.edu, https:
/lwww.ocean-ops.org), a network of profiling floats equipped with sensors capable of monitoring six biogeochemical variables
(Claustre et al., 2020). The time, longitude, latitude, and pressure representing the depth are also recorded during the obser-
vations. Nitrate concentration is measured using ultraviolet absorption spectroscopy (Johnson et al., 2024), with an average
accuracy of £0.5umol - kg’l (Johnson et al., 2021, 2017; Mignot et al., 2019). In this study, a total of 477,870 data in the
study area are used, with 409,011 collected from the MED and 68,859 from the NEA.

The GLODAPv2 Database (https://doi.org/10.25921/1f4w-0t92) provides a uniformly calibrated open ocean data product
on inorganic carbon and carbon-relevant variables (Lauvset et al., 2022, 2021; Olsen et al., 2020). GLODAPv2 contains 15

cruises within the study area, utilized for independent validation of the model’s predictive performance.
2.2.2 Matching sea surface environmental variables datasets

Sea surface environmental variables (SSEV) matched to in situ nitrate data are used as input features for the model, detailed in
Table 1. The SSEV data all span from 2010 to 2023, matching the BGC-Argo data since 2012 and enabling the reconstruction
of the 3D nitrate field since 2010.

The satellite-derived ocean color data were obtained from the European Space Agency’s Global Color Project (Lavender
et al., 2009; Stéphane et al., 2010), with a spatial resolution of 25 km and a temporal resolution of monthly (http://globcolour.
info). The meteorological driver data were taken from the ERAS reanalysis dataset (Hersbach et al., 2020) (https://cds.climate.
copernicus.eu), with a spatial resolution of 0.25° and the temporal resolution of monthly averaged reanalysis. ERAS is the fifth
generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations into a
globally complete and consistent dataset. The Copernicus Marine Service (CMEMS, https://marine.copernicus.eu/) provides

ocean dynamics-related data, which has a spatial resolution of 0.25° and a temporal resolution of monthly averages.
2.3 Methods

Figure 2 depicts the process of estimating nitrate and related research in this paper. The SSEVs and spatiotemporal coordinates
undergo data preprocessing and resampling (Section 2.3.1) to serve as the feature set for the two-step training of the MLP
model. The simulated and BGC-Argo nitrate concentrations provide the constructed MLP model (Section 2.3.2) with labels
for two-stage continual learning (Section 2.3.3) training. So far, MLP completes modeling the relationship between the surface

environment and internal ocean nitrate. After undergoing four kinds of 3D performance validations, the model reconstructed the
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Spatial resolu-

Temporal Reso-

Parameter  Description Unit ion Jution Data source
Chl Chlorophyll concentration mg- m~3 25km monthly Globcolour
SPM Inorganic suspended particulate matter gm~?
NFLH Normalised fluorescence line height m.W-cnff . L
microm - SI

CF Cloud fraction %
PAR Photosynthetically available radiation e(i;j,teilnmz
DM Coloured dissolved and detrital organic materials absorp- -

tion coefficient at 443 nm
ZHL Heated layer depth m
ZEU Depth of the bottom of the euphotic layer m
ZSD Secchi disk depth m
SST Sea surface temperature K 0.25° monthly ERAS
SP Surface pressure Pa
TP Total precipitation m
Z Total depth m
uU10 10 m U wind component m-s !
V10 10 m V wind component m-s !
S10 10 m wind speed m-s~ !
SSH Sea surface height m 0.25° monthly CMEMS
MLD Density ocean mixed layer thickness m

Table 1. Details of the SSEV dataset.

3D nitrate field by inputting iterated spatiotemporal coordinates and corresponding SSEV datasets. The feature contributions

and the potential mechanisms for estimation was evaluated based on the training datasets and the model (Section 2.3.5).

2.3.1 Data pre-processing

The candidate input variables for estimating nitrate are depth, latitude, longitude, day of the year, and SSEV data mentioned

in Section 2.2.3. The time variables (day of the year) and geographical coordinates (latitude, longitude and depth) are intended

to explain the temporal and spatial variations of the studied parameters. The characteristics of biogeochemistry in the ocean

properties are described by SSEV such as SST and Chl (D’Ortenzio and Ribera d’Alcala, 2009). Furthermore, variables such

as SSH provide insights into the ocean dynamics, which may contribute to obtaining more accurate vertical stratification.
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Figure 2. Workflow for nitrate estimation and research on reconstructed results.

All these predictor variables are utilized as input features after preprocessing to train the MLP, with nitrate concentrations
serving as supervisory (Figure 2b). The potential uncertainty in the input features can be significantly reduced by implicitly
incorporating them into the weights of the model when utilizing the same data products (Chen et al., 2019). The gridded SSEV
data are interpolated to obtain features with the spatiotemporal correspondence of the BGC-Argo data. For the SSEV missing
data, estimates that could be obtained after limited interpolation are retained, while the training data with more severe missing

values are excluded. To utilize the annual period, the sampling dates are projected onto the circular coordinates as follows:

Jday1 = cos(27 - (dayofyear/365)), (1)

Jday2 = sin(27 - (dayofyear/365)). 2)
The other input features are then normalized by applying Z-score transformations as follows:
z(xi) = (z; — p) /o, (3)

where 1 and ¢ are the mean and standard deviation of each feature of the train set, x; is the input value of feature 7. Z-
score transformation is a linear normalization technique commonly used in MLP development to align the inputs and intended

outputs within comparable value ranges.
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2.3.2 Multilayer perceptron

The study develops a Multilayer perceptron (MLP) (Bishop, 1995) model, which is a type of feed-forward neural network that
can be used for various types of input or output mappings (Hagan et al., 1997). MLPs can approximate any continuous and
derivable function by means of an error backpropagation algorithm (Rumelhart et al., 1986). An MLP consists of interconnected
neurons organized into input, hidden, and output layers. Each connection is assigned a weight ‘w’, and the output is generated
by combining inputs and weights using an activation function after adding the neuron’s bias ‘b;’. The weights are iteratively
updated during the training epochs to minimize the loss function which reduces the quadratic error between MLP outputs and
labels. This iterative process continues until a minimum is reached using the approach of error backpropagation.

The structure of the MLP is determined by a series of experiments with multiple hidden layers, and it utilizes the LeakyRelu
activation function. The optimal network is determined through multiple trials, where the structure with the least amount of
error on the test dataset and the fewest neurons is selected. The final network was configured as (22-128-64-16-1), compris-
ing one input layer with 22 inputs, three hidden layers with 128, 64, and 16 nodes, and one output layer with the nitrate

concentration as the output value.
2.3.3 Continual learning

The generalization capability of deep learning models, including MLPs, is highly dependent on the representativeness of the
training data. Insufficient or imbalanced training data can exacerbate generalization errors and increase the risk of model
overfitting. In the domain of water resource research, challenges associated with the collection of in situ data have highlighted
the effectiveness of transfer learning (TL) techniques(Cao et al., 2020; Harkort and Duan, 2023; Miao et al., 2023; Syariz
et al., 2020; Zhu et al., 2017). Nevertheless, most TL applications are based on fine-tuning (Ma et al., 2024), which limits their
capacity to integrate knowledge from multiple datasets in a more comprehensive manner (Zhou and Zhang, 2023). To overcome
this limitation, we developed the continual learning (CL) strategy to improve the training process of BGC-Argo. CL enables
the model to assimilate new knowledge continually while retaining previously acquired information, thereby enhancing the
robustness and adaptability of the model.

In practice, the simulated nitrate data are initially employed for pre-training, after which the derived network weights are
transferred to the subsequent training phase supervised by BGC-Argo observations. Ideally, this sequential process enables
the model to capture the general distribution patterns and underlying variation mechanisms present in the simulated nitrate
data, and subsequently refine its estimations to achieve higher accuracy using BGC-Argo measurements. However, when the
model undergoes incremental training through gradient-based updates, it may experience catastrophic interference or forget-
ting, leading to the degradation of previously acquired knowledge (Kirkpatrick et al., 2017). To address this issue, Elastic
Weight Consolidation (EWC), a regularization-based continual learning algorithm, is applied to constrain weight updates by
assigning greater importance to critical network parameters (Kirkpatrick et al., 2017).

Figure 3 illustrates the effect of training strategies on the two-stage training task and how EWC ensures the retention of

knowledge from Task A during the learning of Task B. Sets A and B represent the solution spaces for two training tasks,
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[ ] Low error for simulated-nitrate training (Task A)
[ ] Low error for BGC-Argo training (Task B)
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Figure 3. Schematic illustration of how training strategies influence study trajectories in a two-stage task.

specifically the simulated nitrate and BGC-Argo training. After completing the Task A, the parameters are denoted as 6%, and
the three trajectory lines depict different training processes under varying loss function constraints. Constraining each weight
equally (green arrow) imposes excessively rigid restrictions, allowing Task A to be retained only at the cost of failing to learn
Task B. Conversely, applying gradient steps based solely on Task B (blue arrow) effectively minimizes the loss for Task B but
compromises the knowledge acquired from Task A. Although BGC-Argo measurements are accurate, they are limited in their
spatiotemporal coverage for nitrate reconstruction studies, which is insufficient for a comprehensive global characterization of
nitrate distributions. Consequently, the center of Set B represents the optimal solution for model weights on the BGC-Argo
training set, but which is an overfitted and suboptimal for broader global reconstruction. In contrast, the EWC trajectory (red
line) finds an optimal balance for Task B while calculating the importance of weights for Task A, thus ensuring minimal loss
in Task A’s performance. Robust weights should lie between Sets A and B, balancing the broad and generalizable knowledge
from simulated nitrate with the precise measurements from BGC-Argo. This process can be understood as guiding the model
to retain the broad knowledge to enhance the generalization ability of Task B, or as calibrating the simulated nitrate with the
precision of BGC-Argo. Given that simulated nitrate provides concentration data across the entire ocean, especially in regions
not yet observed by BGC-Argo, this strategy is crucial for enhancing the generalization capability and robustness of the MLP
model.

EWC relies on the Fisher Information Matrix (FIM) to estimate the importance of each model parameter concerning previous
tasks (Fisher and Russell, 1997). The FIM quantifies the amount of information that an observable random variable carries

about an unknown parameter, reflecting how sensitive the likelihood function is to changes in the parameters.The FIM F' is
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F=Eqympguae) [Vologp(ylz;0)Vologp(yla;0) ], 4)

where p(y|z;0) is the likelihood of the target y of the given data = and model parameters 6, and Vg log p(y|x; ) is the gradient
of the log-likelihood with respect to the parameters.

In practical applications, computing the full FIM is computationally expensive, particularly for large neural networks. To
simplify the computation, it is often assumed that the FIM is diagonal, effectively ignoring dependencies between parameters.

In MLPs, the diagonal elements of the FIM can be approximated as follows:

dlogp(ylz,0)\?
Fi ~ ]Ez,yfvpdate(xvy) [(% . (5)

Since the true distribution of data is unavailable, training data is typically used for estimation:

al n nsy 2
F, ~ Nz<ogpy|x)>’ (6)

where, N is the number of training samples, (z,,,y, ) are the data samples, and 6; is the i-th parameter of the model.

In regression tasks using MLPs, we model the output y as:
y=f(z;0)+¢, e~N(0,0%). @)

Assuming Gaussian noise with constant variance o2, the diagonal elements of the FIM can be approximated based on the

gradients of the model’s output with respect to its parameters. Specifically, we compute F; as:

2
i NZ(af xna ) 7 (8)

where z,, is the n-th input sample, and W is the partial derivative of the model output with respect to parameter 6;. This
approximation allows efficient computation of F; during training.
In the Bayesian framework, the goal is to find the parameter 6 that maximizes the posterior probability given both the

previous task data D 4 and the new task data Dp:

p(0|Da,Dp) < p(Dp|0)p(0]Da). &)

Since directly computing p(6|D ) is intractable, we approximate it using a Gaussian distribution centered at the previous

optimal parameters % with precision given by the FIM (MacKay, 1992):

p(0)|DA) = N(0%, F~1). (10)

Taking the negative logarithm of the posterior and ignoring constants independent of #, we obtain the total loss function:

LEWC(Q) ZF 0.41 ) an

10
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where Lp (6) is the loss for the new task only, ¢ labels each parameter, F; is the FIM of the previous task, 6% is the optimal
parameter value after training on the previous task, and A is a hyperparameter controlling the trade-off between performance

on the new task and retention of the previous task knowledge.
2.3.4 Model validation

Nitrate concentrations derived from the identical vertical observations by BGC-Argo exhibit a strong correlation and a gradual
variation with increasing depth. Conventional methods that divide the entire dataset proportionally can result in highly similar
data appearing in both the training and test sets, thereby leading to an exaggerated model performance (Salazar et al., 2022).
Hence, it is imperative to partition the BGC-Argo dataset based on the observation period, with each period referred to as a
profile (Sammartino et al., 2020; Sauzede et al., 2017). This division method ensures the identical distribution and independence
of the training and testing sets. Furthermore, the spatial generalization capabilities of the model can be further assessed by
partitioning the dataset based on devices.

A 5-fold cross-validation approach is employed to evaluate the model performance using independent test data, which is
widely used in statistics and machine learning. In each cross-validation, the entire observational dataset is divided into a
training set (80%) and a testing set (20%) based on profiles. The training set is utilized to train the MLP model, from which the
reconstruction is subsequently derived. The testing set is employed as an independent dataset to evaluate the performance of
the model. On the test set, the MLP performance was evaluated by comparing the estimated values with in situ nitrate values,
using statistical metrics including the determination coefficient (R?), mean bias error (MBE), mean square error (MSE), root

mean square error (RMSE), mean absolute error (MAE), and median absolute error (MedAE).
2.3.5 Evaluating the contribution of inputs

Another major limitation of MLPs and deep learning networks is the lack of interpretability, which makes it challenging to
evaluate the estimation processes and mechanisms. However, it is essential to assess the validity of environmental parameters
for estimating nitrate concentration, especially since their influence and interactions are not fully elucidated.

The Shapley values (Shapley, 1988) is a method in coalition game theory that effectively describes how benefits are fairly
distributed among contributions by the difference between the predicted and average predicted values in each case. The Shapley

value of a feature is its weighted and summed contribution to the output over all possible feature combinations:

biwal)= Y 'S"(p‘p',s‘”' (val (SU {j}) — val {5}), (12)
SC{1,....p3\{j} ’

where ¢; is the contribution of the j-th feature to the results. .S is a subset of the model’s features, and p is the total number of
features. val (S) is the prediction for feature values in S that are marginalized over features not included in .S.

Shapley additive explanations (SHAP) (Lundberg and Lee, 2017) is a method for explaining individual estimation results
based on Shapley values, which has been successfully applied to evaluate predictors using machine learning algorithms in

environmental research (Hu et al., 2023). The purpose of SHAP is to compute the contribution of each feature to the result
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Figure 4. Estimation performance on the test set validated by BGC-Argo measurements (a). The test set results are further divided into the

MED (b) and NEA (c) regions. The red line indicates the fitted trend of the data while the black dashed line denotes the 1:1 parity line.

to explain an instance. The Shapley values are depicted as a linear additive feature attribution approach. SHAP specifies the

explanation as:

M
g@)=do+> ¢, (13)
j=1

where g is the model to be explained, M is the size of feature space and ¢; € R is the feature contribution for feature j, as
same as the Shapley values of ;.

We can calculate SHAP to quantify the contribution of each feature to the prediction results of a black box model in different
samples. The feature tends to increase the output result when SHAP is positive. Conversely, the feature tends to decrease the
output result when SHAP is negative. Absolute SHAP value (ASV) indicates the degree that the feature affects the output. To

observe the overall significance, the mean of ASV for each feature in the data is therefore defined as:

IR0
Ij:gZ‘%
=1

where i represents data samples, and j represents features.

(14)

)

3 Results and discussion
3.1 Model performance

In the 5-fold profile-based cross-validation, all data is used once in the test set. As illustrated in Figure 4, the model performance
is evaluated by comparing estimated values with BGC-Argo observations. the model demonstrates high accuracy in estimating

nitrate concentration, with estimated values generally aligning along the 1:1 line. Importantly, to ensure a comprehensive
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dataset and enhance the stability of the reconstruction process, we retained all measured labels, including negative values.
Furthermore, a Softplus activation function was applied to the model’s output layer to guarantee non-negative predictions,
albeit at the expense of some degradation in statistical performance metrics. Considering the significant differences between
the two regions of the study area, Figure 4b&c respectively show the test results for the MED and NEA. Compared to the NEA,
the MED exhibits a smaller range of nitrate variations and demonstrates stronger estimation performance. The MED records
account for 86% of the total dataset, whereas the NEA contributes only 14%. This data imbalance likely contributes to the
more consistent performance in the MED compared to the NEA.

While the model has shown satisfactory overall performance, it is critical that the accuracy remains consistently desirable
in the vertical dimension. Only then can the model fulfill its intended purpose of estimating and reconstructing the entire 3D
ocean nitrate field. Figure 5 illustrate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>